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SU}_8:(ARY

An 'investigation. _,,'rasmade 9o determine the porform_ice of

an aircraft-engine cylinder using nitrous oxide to provide ad-

ditional supercharging° Single-cylinder tests wore conducted

at constant m_inifold pressure in ',Thich nitrous o:<ide was added

as a gas to the inlet air to provide extra supercharging.

Determinations were made 02 the effects of this method of suet.r-

charging on power output, cylinder-head temperature, and fuel

consumption; and an evaluation was made of methods of cooling

the cylinder when using nitrous oxide° Additional tests vzero

conducted to find the effects of nitrous _'-""-_l'-_suporchargin!; on

the i_lock limits when using 28-R and 33-R fuels. Calculations

were made using these data to estimate the effect on entwine -oer-

formanco of injecting the nitrous oxide into the induction

system as a liquid.

The results of the tests and ca!culatJons are summarized

as ._. o _l.o _Js ._

Inj:.,ction as a gas (test rosults):

I. With constant manifold pressure, the nitrous oxide in-

creased the power output about 14 porconb on an indicated basis

at a nitrous oxide-air ratio of 0.I; this increase m_lountod to

ai_ou.% 25 percent at a ratio of O.2.

2o The knock-limited po'_,_er output was increased about 9

percor_t <)n an indicated basis with a nitrous oxide-air ratio of

0oi and about 17 percent wibh a nitrous oxide-air retie of 0.2.

The knock-limited manifold pressure was decreased about 2 per-.

cent and A percent_ respdctively_ for" these ratios.
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3. Increasing the oxygen concentration- in the charp_;o by -the

addition of nitrous oxide increased the fl_ae speed, resulting in

decreased values of optimmn sp_<rk timing. This of foot _as es-

pecially notable at extremely <ich fuel-o_/gon ratios.

r ._&. f_h_ use of nitrous exido resulted in abnormally high

cylinder-head tumporaturos. _hen knock is not a limitation, those

temperatures can be controll(_d to best adva_.tago by the use of

mixture onric]:mlont. Y!he_!_knock is a !imftation, the use of water

prol erablo.or vJatcr-alcoho! in.jooTsion may be ":_

Injection as a liquid at -128 ° F (calculated results):

i. The nitrous oxide v_o<_Id lower the i_01ot-mixture Tempera-

r,ure Be such an oxten.% Trhen i__joctod as a liquid that poor mi_=ture

distribution may result unless special mc_ans are p_ovidod to pro-

vent this difficulty° _fi'.:enmixture distribution is not a proolom,

calculations indicate that the liquid nitrous oxide _v-ould increase

the indicated power output about tv¢ico as much as _;JitY:gaseous in-

jection for a given manifold pressur,,.

2o Calculations and tost._data show that the lowered mixture

temperatures brought about by injection of nitrous oxide as a

liquid shonld cause the knock-limited indicated pov_or outpus to

TJ.... injection at abe, some.what lower than that obtai_lod .].bn gaseous

fuel-oxygen ratio of 0.410. At richer fuel-oxygen ratios, ho}v-

ov,=r, the knock-limited pov_er v._as increased as the mixture tom-

perature t',_as lowE_recl.

-.-;._-_..T - T_Iz..:£,OZ}_ CTIO_,_

A n tmloer o£' invosti6ations ha_e been conducted v,o dc_tcrmine

the _ffectivonoss of oxy[[en supercharging of military aircraft

engines, particularly for momentary bursts of porter at high alti-

tudes. (See references i and S..) The tos-ts of reference I shorted

that, although the addition of oxygen suppli<;d considerable extra

i,.nOpov,_er, the .,___.oc_on the ok limit and o:a enzino temperatures

was detrimental unless ]argo quantitics of internal coolants wore

in joe%ode

Recently the Air Technical Service Comm_nd, 2rmy 2ir 7orces,

roqu<;stod the N:\C2 to ccnduct tests using nitrous o_£ide to provide

additional oxnggen for supercharging. Data obtained from the Army

Air 7crees i_:dicatod that this compound _.._asselected in an attempt

to obt_._in the benefits of oxygen supercharging without incurring

any reduction of the knock limit° It was understood 8hat the

tests should be applicable insofar as possible to the in-line
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liquid-cooled engine with % 1650-cubic._inch displacement installed

in a pursuit airplane. Inasmuch as no single-cylinder setup of

the 1650..cubic-inch-displacement engine was available, the tests

were conducted on .a single-cylinder setup of an in-line liquid-

cooled engine with a I710-cubic-inch displacements The compression

ratio of the 1710 cylinder was adjusted to that of the 1650

cylinder; other operating conditions were selected to correspond

as nearly as possible to those of the 1650 engine_

The tests were conducted' at the Cleveland Laboratory of the

NACA during the early part of 1945o

FUEI,S A},qO Iv]ATERIALS

Two fuels_ 28-R (grade I00/i30) and 33-R (grade i15/145 .0

were used in the tests_ The AoS.Tol!. distillation curves for these

fuels are shov_ in figure Io

The nitrous oxide used in the tests was obtained conm_ercially

and was indicated to .be at least 98 percent pure; tile impurities

in the nitrous oxide _.:;eremostly free nitrogen. The normal

boiling point of nitrous oxide is -128 o F and the vapor pressure

at 70 ° F is about 760 pounds per square inch absolute. Complete

data on the variation of vapor pressure with temperature are shov_

in figure 2, which was plotted from data given in reference 3, page

46o Other pertinent thermodyn_nic data for nitrous oxide, obtained

from references 3_ 4, 5, and 6, are presented in table I°

Extrapolation of the vapor-pressure curve (fig° 2 to the

fusion temperature o£ -152o3 ° F for nitrous oxide (table i)

indicates that the fusion temperature will equal the saturation

temperature at a pressure of about 7 pounds per square inch absolute°

Nitrous oxide cannot therefore be kept as a liquid unless it is

under a pressure greater than 7 pounds per square inch absolute; if

the nitrous oxide is kept as a liquid by self-refrigeration Some

precautions are necessary to prevent freezing_

Some of the bests were conducted using] two internal coolants_

water and a mixture of 50-percent water and 50-percent ethyl

alcohol by volume_ The ethyl alcohol was denatured with 5-percent

methyl alcohol° The engine was cooled with a mixture of 30-percent

ethylene glycol and 70-percent water by weight and was lubricated

with },]av_jii£0 oil_

APPARATUS

Engine._ - The tests were conducted on a single-cylinder setup

of a multicylinder block mounted on a CUE crankoase_ Cylinders 4_
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5, and G were used to obtain the data for this report. A description

of this engine is gi_en in reference 7.

A pisto n providing a compression ratio of 6.0 and equipped

vrith a chr0me-plated keystone top ring _as installed in the engine.

Because o£' the high temperatures enc.ountered during the tests,

Nichrome-coated exhaust valves and oold_opera%ing sperkplugs .v_ere

used to avoid. Preignition_ .

}[itrous oxide metering apparatus© - A diagrammatic sketch of

f-the nitrous oxide system used v{ith the -test engine is shoval in lg-

ure 3_ The nitrous oxide tanks veere inverted in order that the

liquid would drain from them first_ The nitrous oxide pas_ed from

the tanks through an expansion valve, which also regulated the flew

rate, and into an evaporator where .any remaining liquid was vaporized.

The gas v_as then piped through a metering orifice and into the

combustion-air surge tank°

Induction systemo - The combustion air was taken from the

centr_-I laboratory system and passed through, a pressure-regu, lating

valve; a measuring orifice, and an electric heater before entering

the surge tanke In this t_ik; which had a capacity of about 18

cubic feet, the nitrous ox_ide and the combustion air v_ere mixed,

At the exit of the surge t.ank the fuel and the internal coolants

(_vhen used) were admitted to the mixture. The mixture then passed

through the vaporization t_Ik and to the engine-inlet port. The

vaporization tank was equipp0d _'_ith several inclined baffles to aid

in providing' a homogeneous mixture of fuel, internal coolant,

nitrous oxide; and air.

Instrumentation° - Thin-plate orifices, installed J.n accordance

_rith AoS.MoE. standards, were used to measure the flo_,_ rates of the

nitrous oxide and the combustion air. The differential pressures

across these orifices were measured v_rith v_ater manometers. A Bourdon

gage measured the pressure before the nitrous oxide orifice and a

_ercury manometer measured the pressure before the combustion-air

orifice. The fuel-flow rate and the internal-coo!_u_t flov_ rate

_vero measured _,vith calibrated rot_uotors,

All temperatures v_ero measured v_ith iron-constar±tan thermo-

couples connected to a self-balancing potontiometer. The cylinder-

head thermooouple was located botv_een the exhaust-valve seats in the

position indicated infigure 4o
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DEFINITION OF TER_!S

Nitrous oxide.-air ratio_ - Because the nitrous oxide was used

to supplement the air in supporting conbustion, it was decided that

the nitrous oxide flow should be expressed as a function of the air

floyd-. For this reason the term "nitrous oxide-air ratio" (ratio of

mass rate of flow of nitrous oxide to mass rate of flow of air) was

selected to describe the nitrous oxide flov_ The use of this di;:__en-

sionless ratio facilitates the conparison of data obtained at differ-

ent engine conditions,,

Fuel_,oxygen ratio_- The commonl_--used term. "fuel-air ratio"

c8/0_no% be use-d-'%-o---d'e--s'c-ribeadequately.mixture s%ren@th when there

is introduced, some n_.aterial that also supports co_;_bustion_ The

term "fuel-oxygen ratio" (ratio of mass rate of fuel flow to r_ass

rate of o._ygen flow with the o_jgen in both the air and the nitrous

oxide considered) has therefore been used throughout the report to

describe.mixture strengtho Four values of fuel-ok_ffgen ratio have

been used in this investigation_ With no nitrous oxide flo_ _ the

fuel-air ratios equi_alont tO these fuel_oxygen ratios are:

Fuel-oxygen ratio Fuel-air ratio

0o410 0°095

°453 _105

.495 _115

_539 o125

Optimum spark ti_ing_ - As used in this report the term

"optim1_.u spark timing w refers to -the spark timing giving maximtuu

power a-b constant manifold pressure for a given set of operating

conditionso

Internal coolant-nitrous oxide ratio_ - In the course of the

investigation it was fou__d that the use of nitrous oxide caused

ebnormally high c_,linder temperatures. Because the _nount of extra

cooling required to 19_it these cylinder temperatures depends on-the

nitrous oxide flo_v, this extra cooling should be expressed as a

function of nitrous oxide flow. !_en internal cool_mts were used to

provide this e_ra cooling, the ter_u "internal coolant-nitrous oxide

ratio _' (ratio of mass rate of internal-coolant flow to mass rate of

nitrous oxide f!o_v) was used as a measure of the mnount of internal

coolant supplied to the charge_

Ratio of supple_ental fuel to nitrous oxide. - During a part of

the investigation some data were obtained at rich _lixtures to find

-the effect of mixture enrichment on cylinder coo].ing. In order to

mske those results comparable with the results of tests using
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internal coolants_ the amount of mixture enriclnnent _vasexpressed
by tne__ term "ratio of supplemental fuel to nitrous oxides" The
supplemental fuel refers to the mass rate of fuel flow greater than
that required for the basic fucl,0:.q;r[_en ra_,;io of 0o4!0.

TESTPROCEDUI{E

Throughout all te, sts the follwoing operating conditions were
maint ained :

speed rpm 3_00Engine , o_..oooo,...o ....... o............. _o.... o.°o,
Compression ratio°.,,_,.o.,..o°o ................ oo..0 ..... ,o,_ 6,0
Inlet-oil temperature, 0F_.o_ ....... o,oooo .... .o_**_._,_°_®°o.° ].85
Outlet-coolant temperature, OFo..o_o ................ _o..o .... co 250
Coolant flow, gallons per minute,,Q,°o.,o ...... ° ........ °, ..... 120

The nitrous oxide "_vasinjected as a gas for all tests° For
ea<_htest the temperature of' the inlet air upstres_u of the fuel and
internal-coolant nozzles was adjusted in order t0 obtain the desired
inlet-mixture temperature at the cylinder port _vithout nitrous
oxide° l:_'henthe nitrous oxide was injected the mixture of nitrous
oxide and air _vasheated to the t_;mperaturo required for air aloneo
Because additional fuel }vas required to maintain a constant fuel-
oxygen ratio _vith nitrous oxide supercharging, the mixture terJ:_per-
ature at the cylinder• port decreased slightly as the nitrous oxide
flovr _vas increased,,

Test }vith const_it manifold pressure° - The tests v_ith constant
manifold pressure-_{ere run vrith a certain basic operating condition
from _fhich each basic variable (except mixture temperature) was
separately changed to dote'_ihe the effects of nitrous oxide super-
charging on engine perfonnsnco at various operating conditions. The
follov_ing table sho}vs the basic variables and the values used when
conditions other than the basic _,_ere•tested.
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Variable

_anifold pressure_ in Hg
absolute

ti"uel,- oxysen ratio

Spark timing_ deg D.T_C_
Inlet

F,xh au st

Mixture temperature_ OF

(with no nitrous oxide

flow)

Internal coo la_it-nitrous

Basic Values used

value

30_50_ 70

a0o410 (0o095)_ 0°453 (0ol05)

0_95 (0ollS)_ 0o_39 (0_125)

14-52

20-58

150

28

34

150

0_ 0o25_ 0°50
oxide ratio

avalues in parentheses indicate the corresponding fuel-air ratio

with no nitrous oxide flow°

For all except the spark,,.timing tests_ the nitrous oxide flow

was the independent variable° For the spark-timing tests the nitrous

oxide-air ratio was held constai._t while the spark timing v_as varied

through the desired ra1_[',e.

The fuel used for all the tests with coilstant ma_ifold pressure

was 33-R_

Knock-limit tests._ - Tests were run to determine the effect of

nitrous oxide flow on the knock limit with 28-R s_Id 33-D. fuels._

Both i_uels were tested at the basic operating conditions (except

manifold pressure) noted in the table for the constant manifold-

pressure tests° In addition._ knock tests were run with 33-R fuel

with an enriched mixture (0o495 fuel-oxygen ratio) and with a

lowered mi_[ture temperature (approx... @0°F). Eitrous oxide flow

was the independent variable for the icnock testso

RESULTS A_,_D DISCUSSION

Results of Tests with Nitrous Oxide .Injected as a Gas

Effect of nitrous oxide supercharging at constant manifold

pressure_ - Figure 8 shows the variation of indicated mean

effective pressure with nitrous oxide-air ratio for constant

manifold pressures of 30_ 50_ and 70 inches of mercury absolute_

The percentage increases in indicated mean effective pressure for

various nitrous oxide-air ratios are presented in table II for a

manifold pressure of 50 inches of mercury absolute. These data show
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that the po_er output increased almost linearly with the nitro_is
oi:<ide-air rati0_. A nitrous oxide-air ratio of O_l resulted in an
increase of about. IA percent in power output _id a ratio of 0_2
resulted in _l increase of about 25 percent, The percentage
values varied onl_j a small amount with. manifold pressure, becoming
slightly loss as the manifold pressure -_vasincreasedo

In figure 6 %he cylinder-head temperature is plotted as a
f_unction of indicated mean effective pressure for these same tests.

The inurease in the cs.linder-hcad temperature was considerably

greater for a _iven i1_crease in per<or output -_'_ith.nitrous oxide

superchargi_'_g than _ith air supercharging, This effect caused con-

siderable trouble with preignition at the higher outputs until

colder-operating spark plugs _._rereinstalled. This rapidly risin_

cylinder-head temperature is',probably caused by higher equilibrium.

flame temperatures associated _,<'iththe increased ox_gen concentra-

tion in the charge_

Effect of nitrous oxide supercharging on the ;chock limit._ - The

knock-limited performance of 28-R s_d 33-H fuels with nitrous oxide

supercharging is sho}_ in figure 7. %.]ith both fuels the ]m_ock-

limited po_ver output _as increased when nitrous oxide was injected

_<_hereas the knock-limited manifold pressure was deoreased_ With a

nitrous oxide-air ratio of 0_! the k_lock-limited indicated mean

effective pressure wras increased about ,9 percent for both fuels _ith

a decrease in knock-limited manifold pressure of about 2 percent;

with a nitrous oxide-air ratio of 0.2 the increase in ]_1ock-limitsd

indicated mean effective pressure was about 17 pcrcert v_ith a

decrease .in ]_ock-limitod manifold pressure of about ._ peroon%_

Data similar t.o those sho_',a% in figure .7 <,/ere obtained at a

richer mixture (0_%95 fuel-oxygen ratio)and at a lo_,:er inlet-

mJ.xture temperature and are plotted as a function of inlet-mixture

t,m_perature in figure 8., Straiioht line_ w-ere dra_:,_nbet_Jecn the

points _ _ - ..oecausc onl) _ tv,o r,tixturo %omDe, ratures _::;eretested for each

fuel-oxygen ratio_, Here again the kqlock-limited indicated moan

effective pressure was raised and the knock-limited manifold pres-

sure was lo_verod as the nitrous oxide-air ratio was increased for

all e_.gine conditions tested. As the mixture temperature v;as

lo_vered _ith the leaner fuel-oxygen ratio, the presence of nitrous

oxide caused the ]caock-limited pov.,"eroutput to bc also. lo_{ered.; with

the richer fuel-oxygen ratio the injection of nitrous oxide co:used

the Icnock-limited po_'{er output t0 increase ss the mixture tempera-

ture __as .lo_;ered_ These facts are importmnt in. estimating the

effect on engine performance of injecting nitrous oxide as a liquid.
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Spark-timing requirements _'_ith nitrous oxide supercharging_ -
The results of tests to detemnine optimtun spark timing _-,,ith varyini-_:
percentages of nitrous oxide at t_vo fuel-o_ygen ratios are pro-
sented in figure 9; figure I0 shows optimum spark timing as a func-
tion of the nitrous oxide-air ratio_ It _'{ill be noted that in all
oases the optimun_ spark timing v;as retard@d as the percentage of
nitrous oxide in the charge was increased; this effect became more
pronounced as the mixture _as enriched° The richer fuel-'o.xygen
ratio tested (0_95) is near the limit of infl_mnability for fuel-
air mixtures and consequently required a large ignition advance to
compensate for the resultant lov_ fl_:_e speed. Increasing the oxygen
concentration in the charge by thG addition of nitrous oxide
increases the flmlle speed and permits optim_ operation at a much
_ore retarded spark timing_

The fuel consumption v_as reduced appreciably v_ith the addition
of nitrousoxide_ (See fig. 9_) This decrease is probably caused
by tyro effects: (i) Nitrous oxide has a positive heat of formation
(table I) and therefore liberates energy as it dissociates in the
combustion chamber, and (2) the increased concentration of oxygen
in the charge causes higher equilibriual flame temperatures, _hich
increase the engin<_ officiency_

Effect of internal cooling in conjunction with nitrous oxide
supercharging_ - From the rosuits of the tests at constant _lifold
pressure and from the knock tests, it appears that the main problem
associated v_ith the use of nitrous oxide for extra superch.arging
is cylinder cooling° For this reason tests _-,_ererun to determine
the effects of mixture enrichment (internal ceoli_g _vith supplemental
fuel) and of internal cooling _rith _ater and v_ater-alcohol on the
cylinder-,,head temperature. The results of tests at consto_it mani-
fold pressure to determine the effects of supplemental fuel as a
means of cooling are presented in figure Ii_ Those data shov_that
as the nitrous oxide-air ratio _as increased the loss in po_er
caused by enriching the mixture became less until at a high nitrous
oxide-air ratio the mixture could be greatly enriched with n.o loss
in pov_er. At the ss:_e time the cylinder-head temperature _vas con-
siderably lo_-_-eredby mixture enric_aent

So_o of those data were replotted in figure 12 u_ith cylinder-
head temperature as a function of indicated mean effective pressure;
the curves for supplemental fuel _ore obtained from the d_ta of fig-
ure ii by- irrterpolation_ The dashed line represents the cylind<_r-
head temperatures encountered _-_ith air supercharg_ing at a fuel-
oxygen ratio of 0o410_ If the cylinder-head temperature encountered
with air supercharging can be tolerated for the desired increase in
pov_er output, then the amount of supplemental fuel required to limit
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this temperature to the sir-supercharging value when using nitrous
oxide supercharging will be about I0 percent of the nitrous oxide
flow, If the cylinder-head temperature cannot be allowed to exced
the original value at the power level at which nitrous oxide injec-
tion was begun, the amo_._itof supplcmontsl fuel required will be
about 20 p0rcent of the nitrous oxide f!o_,_o

Data arc shov_ in figure 13 for internal cooling with water and
vrater-alcohol_ For the i:%tcrmediate internal coolant-nitro.us oxide
ratio (0_25) both of these internal coolants resulted, in a very
sl_.$:ht increase in po}_Jeras compared _ith the slight decrease noted
for cooling with supplemental fuel_ The leveling of the mixture-
tomperature curves in figure 13 indicates saturation of the mixture
with _ '_d_c internal coola_itSo Data from figure 13. wore replotted in
figure I_ t_{ith cylinder-head temperature as a function of indicated
moan effective prossure_ With both of the c.ools_tS (water and _vator-
alcohoL) tlie rate of-flow required to limit the temperature to that
obtained t_rith air supercharging )_._asabout 25 percent of the nitrous
oxide flow as compared _yith the IO percent previously mo_tioned for
cooling with sUPl]!emcntal fuel_. In order to limit the cylinder-head
temperature to the original ivaJ_ue_at tn_: po_e9 1OV6]..r_hofo nitrous
o:<ide injection _._asbegun, it appears that the fl0wof either water
or water-alcohol would h_v__ to be about _0 percent, of the nitrous
oxide flov_ The corrospon.ding flov{ rate for supplemental fuel in
this casa was 20 percon%o ....

The results just mc__tioncd sho:_ tna. the _0unt of supplemental
fuel roquir.od for cooling the cylindor With nitrous oxide super-
charging was less thsa_ hal:[' the required _ount of either water or
v_ator-alcohol. It has also boon sh0_'_1that the effect on po}'J_erout-
put was small for any of these methods ofinternal cooling. _hon
knock is not a limitation the use of mixture enrichment is prefer-
able to v_ator or v{ator-alcohol injection if the nitrous Oxide flow
rate is such that extra cooling is required. _._,henkn6ck is a limi-
tation, hov_ovor, it may be nocossar_g to resort to water or water-
alcohol inject.ion because mixture cnric_nont decreased the ]_ock
limit at those lov_ mix%ure_tomp_raturoo,_o "_ (See __igo 8o)

Estim.ation of Results v_ith Nitrous Oxide Injected as a Liquid

Po_verOutput at constant manifold pressure, - in a multiOylinder
ongi_e 8he ni[_rous oxide would probably be.injected into the induc-
tion system as a liquid rather than as a gas because of the compara-
tive simplicity of the liquid system and because of the charge
cooling obtained by the evaporation of the liquid_ For this reason
calculations were made to estimate the pov_cr output that would be
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obtained at const_it manifold pressure vrith nitrous oxide injected

as a liquid at its no_nal boiling point (-!28OF)_ The methods used

in making these calculations appear in the appezldixo

Figure 15 and table III show the power output that could be

obtained with liquid nitrous oxide injection as compared with the

po_ver output obtained with gaseous injection at constant manifold

pressure_ It appears from figure 15 that the increase in power out-

put obtained by liquid injection would be about double the increase

obtained by gaseous injection at all valves of_ nitrous oxide-air

ratio_ The nitrous oxide, ho_vever_ lo_vers the inlet-mi:cbure temper-

ature so much _:Jhen injected iil this warmer that little of the fuel

would be vaporized at the tJ.me of induction into the cylinder, which

would probably lead-to mixture-distribution difficulties v_Jith the

multicylinder engine_ If extremely high nitrous oxide-air ratios

were used (above 0_2) the mixture temperature might even be lowered

so much that the use of water injection for cylinder cooling w-ould

cause icing in the induction system_ The best solution for these

difficulties would be to inject the nitrous oxide into the intake

manifolds as near as possible to the individual cylinder ports°

The desirable feature of higher charge-air density (due to lower

mixture temperature) would be partly lost because of lack of -time for

complete vaporization and mixing before induction into the cylinder_

this loss would be compensated for in some measure, however, by the

high density of the liquid nitrous oxide entering the cylinder°

Knock-limited power output_ - The lowered inlet-mixture temper-

atures brought about by injection of the nitrous oxide as a liquid

would be of doubtful value where the l_.ook limit is concerned°

Figure 8 shoves that at the basic fuel-oxygen ratio of 0o_i0 -the pres-

ence of nitrous oxide caused the knock-limited indicated mean effec-

tive pressure to be lov:ered as the mixture temperature was lov_eredo

These cur_es have been used for determining the values of knock-

limited indicated mean effective pressure with liquid nitrous oxide

injection given in table III. (See the appendix for methods used in

making these determinationso) On the basis of these curves and the

information in table III it is seen that the nitrous oxide would

increase the _mock-].imited po_,v-er only _foout half as much with liquid

injection as with gaseous injection_ If mixture enricb_ment is used

to l_lit the cylinder temperatures when using nitrous oxido_ this

situation may be changed to some extent because figure 8(b) sho_:_s

-the knock-limited per,let at a richer mixture (fuel-oxygen ra.tio of

0°495) to be increased as the mixture temperature is lov{ered_
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SDD,!}_ARY OF RESULTS

The results of the tests and calculations to investigate the

possibilities of using nitrous oxide for extra supercharging at high

altitudes are summarized as follows:

injection as a gas (test results):

I_ With constant m_lifold pressure_ the nitrous oxide increased

the power output about 14 percent on an indicated basis at a nitrous

oxide-air ratio of 0_i; this increase mnounted to about 25 percent

at a ratio of 0_2.

2_ The Imock-limited power output was increased about 9 percent

on an indicated basis with a nitrous oxide_-.air ratio of 0oi _Id

about 17 percent with a llitrous o._(ide-air ratio of 0o2_ The knock.-

limited manifold pressure was decreased about 2 percent and 4 per-

cent, respectively, for these ratios,

3o Increasing the oxygen Concentration in the charge by the

addition of nitrous oxide increased the flslne speed_ resulting in

decreased values of optimum spark timing_ This .effect was especially

notable at extremely rich fuel-o_/gen ratios°

4, .The use of nitrous oxide resulted in abnormally high cylinder-

head temperature__.o Dizen ]<neck is not a limitatio_i, those tempera-

tures can be controlled to best advantage by the use of mixture

enrich_nent, VJhcn knock is a limitation, -the use of water or water-

alcohol injection may be preferable,

Inj_ction as a liquid at -128°F (calculated results):

Io The nitrous oxide would lower the inlet-mixture temperature

to such an extent when injected as a liquid that poor mixture distri-

bution _.._ayresult unless special mearls are provided to provent"this

difficulty_ When mixture distribution i.s not a problem; calculations

i_Idicate that the liquid nitrous oxide would increase the indicated

power output about twice as much as with gaseous injection for a

given _lanifold prossureo



2_ Calculations and test data showythat the Imvered mixture
temperatures brought about by injection of nitrous oxide as a liquid
should cause the knoc]c-].imited indicated prover output to be somo_:d_at
Imvor than that obtained _vith gas_sousinjection of a fuel-oxygen
ratio of 0_410o At richer fuel-oxygen ratios_ ho_vever_ the lcnoc!c-
limited power vras increased as the mixture te_!perature was lov{eredo

Aircraft Engine Research Laboratory_
National Advisory Comnittoe for Aeronautios_

Cleveland_ 0hio_ June 2C_ 1945o
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APPENDIX ESTi},:[ATION OF EJ(_IN,_ PEIiFORMAXCE WITH

_T" .TU ' rlINJECTIOI,_ OF LIQUID _,_.[T,-_0UoOXIDE

During the investigation made at the NACA on supercharging with

nitrous oxide, the tests were all conducted with r_itrous oxide

.injecbed as a gas _;d then heated to bhe temperature of the inlet

air, The use of liquid nitrous o:_.:ide at a. low temperature, howover,

would bring about a pronounced drop in the inlet-mixture temperature

at %he cylinder port _;_d would therefore have an effect om engine

performance o

Evaluation of the cooling effect of the nitrous oxide was first

nec.r._ssary,, The evaporation of the fuel -would probably not be com-

plete at the resul%in[_ low inlet-:.:__ixture temperatures; data were

obtained to show the -vari.ation of mix:ture temperature with inlet-air

temperature in this lo_-tomperature rsngeo The curve plotted from

those data were used in the calculations_

The cooling effect of the nitrous oxide was determined fz'om the

equation

whet e

8,.

o
Pa

c
I}]T g_

mass r_)/te of flow of aira ib/hr

>ass trite of flo_ _,.of .._litrou::_o::<ide, Ib/hr

• " " _" OP_,poO.li_].O ]teat ._ i'lJt_2Ol.tS oxide Ca.s at constant pr< ..... urt.j
i_t,V' ( 7_]0) (o>)

zz.,.._%__a_ te]_pez',,};vbuz'e of L,he _:i.r_ o-[p

_niti.al temoecat_r<;._...... of the nitrous o_:ide_ OF

t
m temperature of the resu!tinz :mixture, o.[,.

.,_%u,._theat of vapo;-i::a_,.Lo._ of nitrous oxide at tempera-

ture tN£O_ BtuTlb
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_.en values of 0_24 for Cpa

HVN20 _ 210 for ta_ and-128 for

equation (i) and it is solved for

0_212 for o _ 171.5 for

PN20

iN20 are substituted into

tm; the equation becomes

5oo4:- ZgSoG(_,_920/'Wa)
b_ : , (2)

o_2._+ o_,212(Who/W_)

where WN20 W a is the nitrous oxide-air ratio,_ The inlet-air

temperature of 210 ° F _:_.s %a.kon _._om the curve %0 correspond %o an
inle%-mixture temperature at 150 ° F_

Equation (2) was used to calculate the resultant temperature

for various mixtures of nitrous oxide and airo The mixture temper.-

ature corresponding to the calculated inlet-air temperature was

determined by means of the curve previously ment_ioned_

The increase in indicated engine output caused by charge cooling

is dependent upon the inc1"ease in charge density and is g_iven by the

reciprocal of the ratio of the absolute temperatures_ Accordingly._

the increase in indicated mean effective pressure with the use of

liquid nitrous oxide is given by

(imep) z _-(i:_ep)g (_ li'.)_/ (3)

vch e r e

( imep ) Z indicated mean effective pressure with liquid nitrous
oxide_ ib/sq ino

(imep) indicated mean effective pressure with gaseous nitrous
g oxide_ Ib/sq in_

mixture temperature at the cylinder port with liquid
nitrous oxide, °R

_g mixture temperature at the cylinder port with gaseous

nitrous o xide_ OR
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Values of (imep)g viere taken from figure 5_ and a mixture

temperature of GIO ° R was used for Tg_ Equation (3) was then used

to determine the indicated mean effective pressures for liquid

nitrous oxide injection at constant manifold pressurec_

The _ock-].imited performance estimates v_ere made by interpola-

tion of figure 8 at the calculated mixture temperature_
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